
9 1 - 2 _.947

Integrating Knowledge and Control into Hypermedia-based

Training Environments: Experiments with HyperCLIPS

Randall W. Hill, Jr.

Jet Propulsion Laboratory
4800 Oak Grove Drive

M/S 125-123
Pasadena, CA 91109

J

Integrating Knowledge and Control into Hypermedia-based
Training Environments: Experiments with HyperCLIPS

Randall W. Hill, Jr.

Jet Propulsion Laboratory
4800 Oak Grove Drive

M/S 125-123
Pasadena, CA 91109

Abstract - In this paper we discuss the issues of knowledge representation and

control in hypermedia-based training environments. Our goal is integrate the flexible
presentation capability of hypermedia with a knowledge-based approach to lesson
discourse management. We represent the instructional goals and their associated
concepts in a knowledge representation structure called a concept network. Its
functional usages are many: it is used to control the navigation through a presentation
space, generate tests for student evaluation, and model the student, to name a few. We
have implemented this architecture in HyperCLIPS, a hybrid system that creates a

bridge between HyperCard ®, a popular hypertext-like system used for building user
interfaces to databases and other applications, and CLIPS, a highly portable
government-owned expert system shell.

1. Introduction
Hypermedia-based learning environments provide two potential benefits that other
computer-based instruction has typically lacked: (I) a tremendous variety of ways to
present information, and (2) a relatively easy means of navigating through a non-
linear information space. The advantages of being able to present instructional
information in different media forms are obvious: it accommodates a wide range
learning styles, it reduces boredom, and it potentiah'y integrates information in ways
that couldn't be accomplished by text alone. The second benefit, the ability to navigate
through a non-linear information space, is clearly an improvement over lock-step
instructional systems that are typically used in institutional training settings. This
enables the student to take a self-guided tour through the hypermedia-based
instructional domain without being constrained by a pre-defined control script. The
problem, however, is that unconstrained exploration is not always the most efficient
way to learn a task or concept. The student may never actually obtain the intended
instruction due to getting lost or distracted in a confusing maze of hyper-connections.
The same navigational freedom that makes hypermedia so powerful, also means there
is less control over the actions of the student. How do we balance the need for
instructional control with the need to explore the instructional domain?

The purpose of this paper is to discuss an approach to incorporating knowledge-based
control into a hypermedia-based training environment so as to have the best of both
worlds: we provide navigational freedom within a carefully selected subset of the
instructional domaln.To this end, the paper is organized into three sections. In section
2 we discuss the use of HyperCLIPS to manage the interface between hypermedia and a
knowledge-based system. In section 3 we describe the use of the concept network as a
knowledge representation scheme for reasoning about the instructional curriculum.
the student, and the presentation. And in section 4 we describe the architecture for
integrating knowledge-based control with hypermedia-based presentation.

2. HyperCLIPS = HyperCard ® + CLIPS
This section of the paper discusses some practical matters concerning how we created a
bridge between a knowledge-based system and a hypermedla system via a tool we have
developed called HyperCLIPS. We had a strong motivation for building HyperCLIPS: we

wantedto avoidhavingto develop either an inference engine or a hypermedia tool from
scratch, hence, we sought existing tools that we could marry together via some sort of

interface. Consequently, we chose HyperCard ®, a hypertext system for the Apple

Macintosh ®, and CLIPS (C Language Integrated Production System), a highly portable
government-owned expert system shell. We do not belabor the particulars of
HyperCLIPS in this section: it has already been reported elsewhere [1],[2]. Rather, the
purpose of this description is to highlight some of the issues involved in integrating a
knowledge-based system with hypermedia, in particular, how control is exercised, and
the separation of knowledge, data, and display.

2., sui q tfk
We butt HyperCLIPS as a bridge between HyperCard and CLIPS. In theory, the interface
between HyperCard and CLIPS is natural. HyperCard was designed to be extended
through the use of external commands (XCMDs), and CLIPS was designed to be
embedded through the use of its I/O router facilities and callable interface routines. As
it turns out, there are some limitations to an XCMD: it cannot have global data and it
can be no larger that 32K bytes. HyperCLIPS overcomes these limitations with an
XCMD called "ClipsXY, which when added to HyperCard gives it access to the CLIPS
routines: clear, load, reset, and run. In addition, an [/O router was added to CLIPS to
handle the communication of data between CLIPS and HyperCard.

2.2 Cr_lng the bric_e: H_rC_wd to _ eommu_k_tlon
HyperCard and CLIPS do not run concurrently, rather, they pass control and data back
and forth to one another. In order for HyperCard to communicate with CLIPS, it uses
the ClipsX command along with one of four sub-commands spedfied as the first
parameter. The four sub-commands that can be sent to CLIPS are clear, load. reset, and
run. A typical use of the ClipsX command is shown in the example below, where ClipsX
is called with the parameters "run" and empty.

-- in a HyperCard script
-- assumes the CLIPS program
-- has been loaded and is ready to run.

ClipsX "run",empty
get the result
-- process the results returned from CLIPS
get line 1 of it
answer it with "OK"

HyperCLIPS Example: ClipsX with the "run" command.

Note that ClipsX is embedded as Just another command in a HyperCard script, and it Is
given two parameters: "run" and empty. When executed, the ClipsX command
deactivates HyperCard and switches over to CLIPS. The "run" parameter instructs
CLIPS to execute rules that have been activated by assertions in the fact base. The empty
parameter is sent when no data is being passed from HyperCard to CLIPS. Otherwise, a
data parameter could be sent that would be trapped and parsed by CLIPS rules. Here is a
summary of the four different sub-command parameters:

c/ear - the CLIPS command to clear the rules and facts from the CLIPS environment.
/oad - the CLIPS command to load a file of rules or fact definitions.
reset - the CLIPS command to initialize the rules and facts that have been loaded

into the environment.
run - the CLIPS command to initiate the firing of rules that have been activated by

assertions in the fact base.

2.s the .ldge: to oommu k n
There are two basic commands used for passing control and data back to CL/PS:

fprffttout - this is the I/O command used to pass data f_rom CLIPS to HyperCard. The
data given to the fprintout command is buffered and routed to a HyperCard variable
called "the result", which is parsed and used in HyperCard.

halt - when embedded in the right hand side of a rule, the halt command suspends
CLIPS and passes control back to HyperCard.

; in a CLIPS program
(defrule get data

?f < - (phase get_data)
=>

(retract ?f)

(fprintout t "need data" crlf)
(assert (get_data_continue))
(halt))

(defrule get_data_contlnue
?f <- (get_data_contlnue)
=>

(retract ?f)
(bind ?data (read))
(assert (data ?data)))

Example: Passing Control to HyperCard from CLIPS

In this example CLIPS sends "need data" to HyperCard and then halts so that control
can be passed back also. Once CLIPS is activated again, the get-data-contlnue rule will
bind the HyperCard data to a variable, which can subsequently be asserted to the fact
base. Note: in addition to the ha/t command, control is also passed back to HyperCard
automatically whenever the rules finish firing.

3. The Knowledge Needed to Control Instructional Interaction

3.1 The Role of Knowledge in Hypemmedla
Our goal is to provide adaptive tutoring to the student by combining the flexibility of
hypermedia to present the information with the representational and reasoning power
of a knowledge-based system to model the student and control the interaction. We view
the separation of the hypermedia from the knowledge-based system in terms of the
functionality that each will implement. The hypermedia environment is used to
represent information in human understandable form through the use of non-llnear
text. graphics, animation, video, audio, and any other available communication
medium. The knowledge-based system is responsible for. (1) planning which
information to present in order to meet a set of instructional goals, (2) modeling the
student's apparent knowledge of the instructional domain through the use of evaluative
tests and exercises, and {3) dynamically adapting the lesson to meet the needs of each
student based on the modeling performed in (2). The problem, then, is linking the
knowledge-based planner and student modeler with the hypermedia-based information
presentation system. There must be a mapping between the information encoded in the
hypermedia displays and the knowledge used to plan and monitor a lesson. The way in
which we have chosen to make this llnk is through the use of a representation we call a
concept network.

3.2 The Concept Network
The concept netu_rk is a form of a semantic net. a knowledge representation scheme
that has been in use for over twenty years [3]. The concept network derives its meaning

from three sources: nodes.//nks, andfunct/ons that work on the network. The nodes in
the concept network have associations with objects m the hypermedia-based
instruction environment. The nodes are divided into types, all of which have a special
semantic meaning within the context of the instructional environment. They are
linked by a set semantic relations that provide structure to the network. The functions
take the concept network and perform operations that are keyed on the structure and
meaning of the network.

prior Concept teaches

section

tests

Presentatior

Lesson

Question

Test

exercise

Figure I: The Concept Network: Node and Link Types

3,2.,Node
We have defined five basic node types: concept, questlon, presentat_n, test. and/esson.
(See Figure 1 for a visual representation of the concept network. } Each node, in addition
to having a name, may also have attributes associated with it to store information such
as the name of a hypermedia identifier associated with the node.

Concept - This is the most commonly used node type In the concept network. A
concept is a unit of knowledge or a sk/ll; it can be decomposed Into other concepts using
the subcon_pt llnk. If a concept cannot be further decomposed (Le. it has no
subconcepts}, then it is generally called a prlmltWe concept and it is a self-contalned
unit of knowledge that must be learned by a student. Clearly, a pr/m/tive concept is a
terminal (or leaf} node in the hierarchy formed by the subconcept links. Likewise,
concepts that have subconcepts are Internal nodes In the concept network. A non-
primitive concept can be used In two different ways: (a) it can Integrate several different
ideas represented as concepts, or (b) it can serve as a convenient way of organizing a set
of concepts together for teaching and testing.

Question - The questkxt node is directly related to the concept -- a question is
formulated to test the student's knowledge of a concept. It is also associated with a
hypermedia object that presents the question, thus. the question node serves to llnk

concepts with hypermedia objects. Since questions axe linked to concepts, we have to
carry over some of the assumptions we made about the extent of a concept (i.e. its
decomposiUon). Questions that are associated with non-primitive concepts are
assumed to test aU of the subconcepts of that node. In other words, if a student answers a
question associated with a non-primiUve concept correctly, then it is assumed that the
student knows everything about the primitive concepts that are descendents of the non-
primitive concept. This is an important assumption, as we will show later in the
discussion of how to analyze the student.

Presentation - A presentation node is similar to a question in that it serves as a link
between a concept and a hypermedia object. Thus, when the instructional planner
decides that a concept should be presented, it selects one of the presentations associated
with the concept.

Lesson - A/esson is a set of concepts that must be learned. It is used to drive a lesson
presentation -- or the production of a test to cover a lesson.

Test - A test is a set of questions that tests a lesson. A test definition node defines a
way of generating a test -- the llst can be composed in several different ways: a llst of
questions, a llst of concepts, a llst of lessons. Naturally, if the test is to be generated
from a list of concepts or tasks, then the question selected for each concept will be from
the llst of questions associated with the concept.

3.2.2
The nodes are connected into a network through the use of various types of links that we
define below.

subconcept - The subconcept link denotes that one concept is a subconcept of
another. In effect, the subconcept relation creates a hierarchy of concepts where the top
level concepts are the most general and encompassing, while the terminal level
concepts are the most specific and basic. This link is used a great deal in generating
lesson presentation sequences as well as examinations of the material. A concept can
be a subconcept of more than one concept, thus the hierarchy is not a true tree. On the
other hand, we do not permit cycles in the network, making the subconcept hierarchy a
directed acyclic graph.

prior - Like the subconcept link, the pr_ link is used solely among concepts. It
denotes that one concept should be presented before another. Included in the reasons for
using this link may be that one concept may be a prerequisite for another, or else it Just
makes good pedagogical sense to always present a particular concept before another.
This lesson sequence generator does not require this linkage to be present, but it does
take it into consideration when it is there.

teaches - Presentations are linked to concepts through the teaches link. This link

means that a presentation, which is directly associated with a hypermedia object.
contains information related to a concept. We place no limit on how many
presentations can be linked to a particular concept, nor on how many concepts a
presentation can teach.

tests - The tests link is analogous to the teaches link in that it links concept nodes to
question nodes, which are individually associated with particular hypermedia objects.
More than one question can be linked to a concept using this _ Likewise, a question
can be linked to more than one concept.

exam/nes - The exam/nes llnk is the way we link tests with lessons. Thus, this link-
is a way of connecting a set of questions with a set of concepts.

exercise - Questions are linked to tests using the exerc-Lse llnk. A question can be
associated with more than one test.

section - Concepts are linked to lessons via the sect/on llnk. Note that it is not
necessary to explicitlyllnkeveryconcept covered by a lesson to the lesson node using
this link. By linking a high level concept to a lesson using section, all of the
subconcepts of the linked node are implicitly included.

3.2.3 Functions

So far we have only described the concept network in terms of the meaning that is
derived from its structure and its contents. These components are obviously important
since they provide the means of semantically organizing the hypermedia to be used for
instruction, but there is one more essential ingredient to the concept network that
operationalizes its meaning: the funct/_ns that are used to transform the concept
network into an actual lesson, practical exercise, or test.

The concept network nodes and links are stored declaratively as a set of assertions in a
CLIPS fact base. The functions that process this conecUon of semanUc information are
implemented as CLIPS rule bases, thus, we use a form of logic programming to
operationalize our concept network. To date we have implemented functions to: drive
the presentation of hypermedia courseware, dynamically generate tests for a selected
portion of the concept network and evaluate the student's test results. Each of these
functions are keyed to the semantic relations that exist among the concept network
nodes -- much depends on the structure of the network when it comes to generating
lesson sequences and tests, as will be discussed in the subsections below. In addition,
functions are also influenced by the attributes of the nodes as they pertain to the
student model that overlays the network. By sensitizing the presentation planner to the
individual student, it can adapt the instruction to fit the needs of the individual rather
than giving every student the same lesson.

3.2.3.1 The PresentaUon Planner - G/yen a concept network and a set of instructional
goals {i.e. a lesson definition}, the presentation planner uses chains of subconcepts to
identify the set of concepts that must be taught in the lesson. The primitive concepts
that must be covered by the lesson form a subset of the lesson concepts -- we emphasize
the word cover because one of our basic assumptions about giving a presentation (or a
test} is that in selecting hypermedia objects to present the concept, we must form a
covert_ set. that is. a presentation sequence is acceptable fland only flit: (1} directly
presents a primitive concept, or (2} it presents an ancestor of the primitive concept.
Thus for any given primitive concept there is at least one chain of ancestors from which
a presentation can be chosen that will cover it. For each primitive concept we randomly
select a hypermedla presentation from the concept's ancestral chain to use for
instruction, avoiding the choice of a hypermedia object that has already been chosen
for another concept. Once the set of presentations has been chosen, it is necessary to
order them into a sequence. The choice of a sequence is influenced by the pr_ link,
which creates a partial order among individual presentations -- the rest are randomly
ordered.

3.2.3.2 The Test Generator - The test generator works on many of the same assumptions
as the courseware driver. Given a concept network and one or more nodes that serve as
"roots" to sections of the concept network {which, you may recall, is a direct acycllc
graph), the test generator produces a set of questions that will form a _ set for the
concept subset indicated by these "roots". Note that in the inst_ where we want to
generate a test that covers a particular lesson, we can work from our concept network
definition of the test node to produce the test. In this case the test is linked to the lesson
by the exambles llnk, and the lesson has a set of concept 'hoots" associated with it by
the section link.

3.2.3,3 TheStudentAnalyzer- A studentmodelis a representation of the current state
of the student's knowledge [4]. It is used for the purpose of identifying missing
knowledge as well as for diagnosing misconceptions. In the current version of our
system, we concentrate on identifying missing knowledge rather than diagnosing
misconceptions. Consequently, our approach to student modeling is to use the overlay
method with differential analysis [5]. We assume that the concept network represents
everything we want the student to know about a topic, hence it is the target model. The
student's knowledge is evaluated using tests generated from the target model, and the
results are overlaid on the target model. Thus, the function of the student analyzer is to
take the test results and generate a model of the student. It isn't quite as easy as Just
marking the nodes in a concept network as "known" or "unknown" since the test does
not explicitly test every concept. In the cases where a concept has not been explicitly
tested, we have to infer whether the student knows the concept based on the actual
results. We make these inferences by inferring whether each of the primitive concepts is
known and then propagating these values backwards from the subconcepts to their
superconcepts.

4. An Architecture for Hypermedia-based Instruction
In the last section we defined the structure of the knowledge used to make decisions
about how to sequence a lesson, how to generate a test, and how to analyze a student. In
this section we will take a step back and look at how the individual components of the
knowledge-based system interact with each other and with the hypermedia
environment. We will bring the pieces together to show the overall architecture of a
hypermedia-based instruction system.

4.1 Preliminaries to Instruction: Analytls and Development
In order to conduct a lesson there are several prerequisites that we are assuming are in

place. First, we assume that the concept network for the lesson has already been built by
a course developer. Though not described in this paper, we have built a tool to assist in
the construction of the network -- it includes a network editor and display capability,
and it produces as output the appropriate CLIPS assertions that can be interpreted by
the CLIPS rules. Note that this step may be one of the most critical since it involves a
careful analysis of the structure of the knowledge to be transferred to the student during
the lesson. Second, we assume that once the concept network has been built that the
course developer wiil create a variety of presentations for the concepts in the lesson. If
the concepts can be represented in a variety of alternative media forms, then the greater
number of choices available to the presentation planner make for a more robust
instructional environment. Third, along with the presentations being developed for the
concept network, a wide variety of test questions must also be written. It is desirable for
each concept to have multiple questions from which to choose when generating a test.

4.2 The Role of Kn_ in E_eRdslng C_trol
So how does it all fit together? This is an/mportant question since the issue is how
much freedom should be given to the student in the presentation of the lesson. At one
extreme the presentation sequence being sent to the hypermedia environment (refer to
Figure 2) could be equivalent to an entire lesson, and at the other extreme it might
contain the identifier for one presentation of one concept. In either case, the question of
what the Hypermedia environment should do with the presentation sequence is open.
One approach would be to give the student 'Tree play" within the bounds specified by the
presentation sequence, with the constraint that partial orderings among presentations
be observed (i.e. don't allow free play in a region until the predecessors have been
successfully traversed.) Another approach would be to present the information in strict
accordance with the presentation sequence -- this approach may be appropriate in some
cases, but it obviously takes away more freedom for exploration than the first

approach.

test
results

Hypermedta
Presentation

System

interaction
data

presentation
sequence

test

sequence

CLIPS Rule Base

Presentation
Planner

Student Test
Analyzer Generator

Model Network

• ii

CLIPS Fact Base

Figure 2: An Architecture for Hypermedia-based Instruction

However one decides to implement the frequency of how often control is passed back
and forth between the hypermedla environment and the knowledge-based system, the
general flow of control is envisioned as being a cycle:

1) generate a presentation sequence and send it to the hypermedia environment,
2} the hypermedia environment presents the lesson segment and sends user

interactions back to the presentation planner.
3) the presentation planner either repeats 1, or it passes control to the test

generator,
4} the test generator creates a test to cover the lesson segment Just presented and

sends it to the hypermedla environment.
5) the hypermedia gives the test specified by the test generator and passes the results

back to the student analyzer,
6} the student analyzer takes the test results and updates the student model; it then

passes control back to the presentation driver,
7) repeat the cycle until the lesson is complete or the student quits.

4.3 Current Status e/Our Wefk
We have implemented the architecture Just described using HyperCLIPS. Due to the
modulari W of the knowledge-based system we have implemented m CLIPS, we are

confident that we could use our current knowledge-based system as a driver in other
hypermedia environments. In fact, our HyperCLIPS implementation serves as a
prototype and debugging tool so that we can port our efforts to a hypermedia-based
instruction system called Tools for Courseware Development, which is being developed
elsewhere.

5. Conclusions
In this paper we have discussed an approach to integrating hypermedia with
knowledge-based systems for the purpose of conducting instruction. Hypermedia is an
attractive way to give information-seekers a way of navigating through a database. It
provides freedom and variety, both of which seem to be desirable traits for an
information processing system. The problem with hypermedia in general is the .ease of
taking the freedom to navigate too far -- the user gets lost, off track, distracted, etc.
These problems can be even more severe in a training system where the intent is for the
user to learn some structured knowledge, be it a task or a related set of concepts. On the
other hand, many computer-based instruction systems have been notoriously
inflexible and boring, and could benefit from the flexibility and the variety of ways of
presenting information found in hypermedia. Thus, we have suggested that by using a
knowledge-based system to make decisions and exercise control, one can harness the
power of the hypermedia environment without destroying its usefulness.

6. Bibliography

[1] Hill, Randall W., Jr., and William B. Picketing, "Intelligent Tutoring Using
HyperCLIPS", CLIPS User Conference, 1990, Houston, Texas.

[2] Picketing, William B. and Randall W. Hill, Jr.. "HyperCLIPS: A HyperCard Interface
to CLIPS". CLIPS User Conference, 1990, Houston, Texas.

[31 Wenger, Etienne, "Artificial Intelligence and Tutoring Systems", Morgan Kaufmann
Publishers, Los Altos, CA, 1987.

[4] VanLehn, Kurt. "Student Modelln_ °. In Martha C. Poison and J. Jeffrey Richardson
(Eds.), Foundations of Intelligent Tutoring Systems (1988): 55-78. Hillsdale. New Jersey:
Lawrence Erlbaum Associates Publishers.

[5] Wilklns, David C., William J. Clancey and Bruce G. Buchanan. "Using and
Evaluating Differential Modeling in InteUlgent Tutoring and Apprentice Learning
Systems". In Joseph Psotka, L. Dan Massey and Sharon A. Mutter, Intelligent Tutoring
Systems: Lessons Learned (1988):257-275. Hillsdale, New Jersey:. Lawrence Erlbaum
Associates Publishers.

